Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Immunol ; 24(6): 979-990, 2023 06.
Artigo em Inglês | MEDLINE | ID: covidwho-2315011

RESUMO

Antiviral CD8+ T cell immunity depends on the integration of various contextual cues, but how antigen-presenting cells (APCs) consolidate these signals for decoding by T cells remains unclear. Here, we describe gradual interferon-α/interferon-ß (IFNα/ß)-induced transcriptional adaptations that endow APCs with the capacity to rapidly activate the transcriptional regulators p65, IRF1 and FOS after CD4+ T cell-mediated CD40 stimulation. While these responses operate through broadly used signaling components, they induce a unique set of co-stimulatory molecules and soluble mediators that cannot be elicited by IFNα/ß or CD40 alone. These responses are critical for the acquisition of antiviral CD8+ T cell effector function, and their activity in APCs from individuals infected with severe acute respiratory syndrome coronavirus 2 correlates with milder disease. These observations uncover a sequential integration process whereby APCs rely on CD4+ T cells to select the innate circuits that guide antiviral CD8+ T cell responses.


Assuntos
Antivirais , COVID-19 , Humanos , Calibragem , Células Apresentadoras de Antígenos , Linfócitos T CD8-Positivos , Antígenos CD40 , Interferon-alfa , Linfócitos T CD4-Positivos
2.
J Hepatol ; 79(1): 150-166, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: covidwho-2261801

RESUMO

BACKGROUND & AIMS: Patients with chronic liver disease (CLD), including cirrhosis, are at increased risk of intractable viral infections and are hyporesponsive to vaccination. Hallmarks of CLD and cirrhosis include microbial translocation and elevated levels of type I interferon (IFN-I). We aimed to investigate the relevance of microbiota-induced IFN-I in the impaired adaptive immune responses observed in CLD. METHODS: We combined bile duct ligation (BDL) and carbon tetrachloride (CCl4) models of liver injury with vaccination or lymphocytic choriomeningitis virus infection in transgenic mice lacking IFN-I in myeloid cells (LysM-Cre IFNARflox/flox), IFNAR-induced IL-10 (MX1-Cre IL10flox/flox) or IL-10R in T cells (CD4-DN IL-10R). Key pathways were blocked in vivo with specific antibodies (anti-IFNAR and anti-IL10R). We assessed T-cell responses and antibody titers after HBV and SARS-CoV-2 vaccinations in patients with CLD and healthy individuals in a proof-of-concept clinical study. RESULTS: We demonstrate that BDL- and CCL4-induced prolonged liver injury leads to impaired T-cell responses to vaccination and viral infection in mice, subsequently leading to persistent infection. We observed a similarly defective T-cell response to vaccination in patients with cirrhosis. Innate sensing of translocated gut microbiota induced IFN-I signaling in hepatic myeloid cells that triggered excessive IL-10 production upon viral infection. IL-10R signaling in antigen-specific T cells rendered them dysfunctional. Antibiotic treatment and inhibition of IFNAR or IL-10Ra restored antiviral immunity without detectable immune pathology in mice. Notably, IL-10Ra blockade restored the functional phenotype of T cells from vaccinated patients with cirrhosis. CONCLUSION: Innate sensing of translocated microbiota induces IFN-/IL-10 expression, which drives the loss of systemic T-cell immunity during prolonged liver injury. IMPACT AND IMPLICATIONS: Chronic liver injury and cirrhosis are associated with enhanced susceptibility to viral infections and vaccine hyporesponsiveness. Using different preclinical animal models and patient samples, we identified that impaired T-cell immunity in BDL- and CCL4-induced prolonged liver injury is driven by sequential events involving microbial translocation, IFN signaling leading to myeloid cell-induced IL-10 expression, and IL-10 signaling in antigen-specific T cells. Given the absence of immune pathology after interference with IL-10R, our study highlights a potential novel target to reconstitute T-cell immunity in patients with CLD that can be explored in future clinical studies.


Assuntos
COVID-19 , Interferon Tipo I , Camundongos , Animais , Interleucina-10 , SARS-CoV-2 , Camundongos Transgênicos , Cirrose Hepática , Camundongos Endogâmicos C57BL
3.
Neurol Res Pract ; 4(1): 53, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: covidwho-2098476

RESUMO

Recent studies have indicated that long-term neurological sequelae after COVID-19 are not accompanied by an increase of canonical biomarkers of central nervous system injury in blood, but subgroup stratifications are lacking. This is a particular concern in chronic headache, which can be a leading symptom of Post-COVID diseases associated with neuronal damage such as vasculitis or autoimmune encephalitis. We here compared patients with mild Post-COVID-19 syndrome and persistent headache (persistent Post-COVID-19 headache) lasting longer than 12 weeks after the initial serological diagnosis, to patients with mild and severe COVID-19 and COVID-19-negative controls. Levels of neurofilament light chain and glial fibrillary astrocytic protein, i.e. markers of neuronal damage and reactive astrogliosis, were lower in blood from patients with persistent Post-COVID-19 headache compared to patients with severe COVID-19. Hence, our pilot serological study indicates that long-term Post-COVID-19 headache may not be a sign of underlying neuronal damage or neuroinflammation.

4.
J Infect Dis ; 225(10): 1688-1693, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: covidwho-1853095

RESUMO

We compared the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-specific antibodies to induce natural killer cell-mediated antibody-dependent cellular cytotoxicity (ADCC) in patients with natural infection and vaccinated persons. Analyzing plasma samples from 39 coronavirus disease 2019 (COVID-19) patients and 11 vaccinated individuals, significant induction of ADCC could be observed over a period of more than 3 months in both vaccinated and recovered individuals. Although plasma antibody concentrations were lower in recovered patients, we found antibodies elicited by natural infection induced a significantly stronger ADCC response compared to those induced by vaccination, which may affect protection conferred by vaccination.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Citotoxicidade Celular Dependente de Anticorpos , COVID-19/prevenção & controle , Humanos , Células Matadoras Naturais , Glicoproteína da Espícula de Coronavírus , Vacinação
5.
Immunity ; 54(11): 2650-2669.e14, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1442406

RESUMO

Longitudinal analyses of the innate immune system, including the earliest time points, are essential to understand the immunopathogenesis and clinical course of coronavirus disease (COVID-19). Here, we performed a detailed characterization of natural killer (NK) cells in 205 patients (403 samples; days 2 to 41 after symptom onset) from four independent cohorts using single-cell transcriptomics and proteomics together with functional studies. We found elevated interferon (IFN)-α plasma levels in early severe COVD-19 alongside increased NK cell expression of IFN-stimulated genes (ISGs) and genes involved in IFN-α signaling, while upregulation of tumor necrosis factor (TNF)-induced genes was observed in moderate diseases. NK cells exert anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) activity but are functionally impaired in severe COVID-19. Further, NK cell dysfunction may be relevant for the development of fibrotic lung disease in severe COVID-19, as NK cells exhibited impaired anti-fibrotic activity. Our study indicates preferential IFN-α and TNF responses in severe and moderate COVID-19, respectively, and associates a prolonged IFN-α-induced NK cell response with poorer disease outcome.


Assuntos
COVID-19/imunologia , Interferon-alfa/imunologia , Células Matadoras Naturais/imunologia , SARS-CoV-2/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Sequência de Bases , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Interferon-alfa/sangue , Fibrose Pulmonar/patologia , RNA-Seq , Índice de Gravidade de Doença , Transcriptoma/genética , Reino Unido , Estados Unidos
6.
Nat Commun ; 12(1): 1931, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: covidwho-1152851

RESUMO

The COVID-19 pandemic continues to have an unprecedented impact on societies and economies worldwide. There remains an ongoing need for high-performance SARS-CoV-2 tests which may be broadly deployed for infection monitoring. Here we report a highly sensitive single molecule array (Simoa) immunoassay in development for detection of SARS-CoV-2 nucleocapsid protein (N-protein) in venous and capillary blood and saliva. In all matrices in the studies conducted to date we observe >98% negative percent agreement and >90% positive percent agreement with molecular testing for days 1-7 in symptomatic, asymptomatic, and pre-symptomatic PCR+ individuals. N-protein load decreases as anti-SARS-CoV-2 spike-IgG increases, and N-protein levels correlate with RT-PCR Ct-values in saliva, and between matched saliva and capillary blood samples. This Simoa SARS-CoV-2 N-protein assay effectively detects SARS-CoV-2 infection via measurement of antigen levels in blood or saliva, using non-invasive, swab-independent collection methods, offering potential for at home and point of care sample collection.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/sangue , SARS-CoV-2/metabolismo , Saliva/virologia , COVID-19/epidemiologia , COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Epidemias , Serviços de Assistência Domiciliar , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Curva ROC , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Manejo de Espécimes/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA